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Abstract. Cavity solitons were recently predicted in semiconductor microresonators grown with a vertical
geometry. By exploiting a previously introduced model valid for both passive and active configurations of
a multiple-quantum-well device, we studied the response in the time domain offered by such self-organized
structures in the device, when a small modulated optical signal is applied. Using appropriate symmetry
considerations, the (2+1)-dimensional problem is reduced to a tractable form, by means of a semianalytical
method. We demonstrated that large differential-gain factors, competitive with those of other all-optical
and some opto-electronic devices, are attainable, when the output signal is collected at the peak of the
cavity soliton. This fact, in connection with the reconfigurability properties already established for cavity
soliton arrays, allows to conceive different schemes for optical information handling: feasible arrangements
for parallel amplification and for signal commutation are proposed.

PACS. 42.65.Tg Optical solitons; nonlinear guided waves – 42.79.-e Optical elements, devices, and systems
– 42.70.Nq Other nonlinear optical materials; photorefractive and semiconductor materials

1 Introduction

The possibility of using nonlinear optical systems to am-
plify an optical beam has motivated extended researches
since the discovery of Optical Bistability (see, e.g., [1]).
The intensity of a coherent beam, injected into the device,
yields an output beam of higher intensity. The amplifica-
tion ratio is generally referred to as “dc gain”, adopting a
terminology derived from electronics. Another interesting
application lies in the amplification of oscillations in the
injected beam intensity, in which case the information is
thought to reside in the carrier beam modulation. In this
case the “differential gain” is introduced, as a measure of
the oscillation amplification ratio between the input and
the output beam.

In recent years, schemes for all-optical transistor op-
eration in nonlinear optical systems have been proposed
for several devices, including nonlinear crystals capable of
parametric conversion, semiconductor devices, lasers with
injected signal, photorefractive media and liquid crystal
light valves. Semiconductor devices and χ2 media offer
the bonus of fast time response and device compactness;
the former, in addition, lend themselves to applications
where optical signals are interfaced with microelectronic
circuit units for electro-optical signal amplification or pro-
cessing [2].

One limitation, so far, has been the physical dimen-
sions of the nonlinear optical component: each single
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beam, thought as the signal carrier, has to be processed by
one nonlinear element and gives rise to one output beam
(output signal). If several signals must be treated in par-
allel, then one must, e.g., ensure suitable means to isolate
the active (amplifying) elements to avoid pixel crosstalk.
In addition, tight focusing of the beams on the material is
discouraged because of diffractive divergence. In semicon-
ductor devices a widely adopted technique is the etching of
arrays of monolithic elements in a wafer, a typical case be-
ing that of Vertical-Cavity Surface-Emitting Lasers (VC-
SELs). There, physical separation of the material struc-
tures guarantees radiation as well as carrier plasma con-
finement and thus pixel independence. Of course, micro-
machining material structures makes the pixel location
fixed, requiring accurate beam addressing and readout,
along with a loss of flexibility as for array reconfigurabil-
ity and fanning.

In the recent few years theoretical researches and fewer
experimental demonstrations have shown the possibility
of realizing self-organized isolated intensity peaks in the
transverse profile of a coherent field interacting with a
nonlinear planar resonator (see, e.g., [3,4]). These peaks
have a solitonic character in the sense that they do not
experience diffractive broadening and several such struc-
tures can be independently switched on and off in a broad
area device [5]. They are commonly designated as Cavity
Solitons (CS).

A major breakthrough has been represented by
the prediction of such structures in a semiconductor
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microresonator based on a GaAs/AlGaAs Multiple Quan-
tum Well (MQW) active medium [6]. Theoretical models
and simulations predict that a 3 × 3 matrix of such self-
organized pixels could be realized in a resonator having a
100×100 µm cross-section. Although this figure is far from
challenging microelectronic circuitry, it could be interest-
ing when compared to single smart pixels which, adding
altogether the optical resonator and the electronic inter-
face, scale up to 0.3–1 mm2 [7]. As will be illustrated in the
following sections, CS can be operated as optical transis-
tors for amplifying signal modulation. A differential gain
factor has been found, which is quite sizable when com-
pared to similar figures for other all-optical devices, and to
some electro-optical ones, to the best of our knowledge [8–
11].

The characterization of CS in semiconductor devices
has been extensively carried out in [12] and the reader
is referred to that work for an overview of their charac-
teristics. Here we will concentrate on the oscillation am-
plification regime when the injected beam is temporally
modulated.

For the scope of this work, let it suffice to remind
that CS are single intensity peaks appearing in the trans-
verse field profile emitted by a broad area semiconduc-
tor microresonator. They are stationary structures which
are sustained by an injected plane-wave field, and can be
switched on and off by suitably addressed pulses superim-
posed to the injected field profile. CS created at distances
larger than a certain critical distance (roughly equal to the
same CS size) remain independent of one another. Thus
CS can be thought as light pixels “written” in the trans-
verse section of the device with no need of pixel etching
in the medium.

Once the concept of light pixel has been brought in, it
appears natural to evaluate its response in the time do-
main to oscillations. In Section 2 we evaluate the linear
response of the CS, introducing a new approach with re-
spect to what has been done in the past [13,14] where
the variable whose response was sought never exhibited
space dependence. In Section 3 we estimate the figures of
merit which we consider relevant for optical transistor op-
eration. Section 4 contains the numerical results and their
comparison to theoretical predictions, and Section 5 of-
fers some discussions about what has been obtained and
the perspectives of applications for CS-based all-optical
devices.

2 The model and the linearized equations

We consider a broad area semiconductor heterostructure
both in the passive and in the active configuration. The
semiconductor microresonator is of the Fabry-Pérot type,
with a MQW structure perpendicular to the direction z
of propagation of the radiation.

The mathematical model appropriate to describe this
device was stated in two recent works [6,12]. We apply
the mean field limit because the high-Q cavity is quite
short, and eliminate the longitudinal coordinate z, thus

assuming that only one longitudinal cavity mode is rele-
vant to the dynamics of the system; we then obtain a set
of partial differential equations for the temporal evolution
of the electric field inside the cavity and of the carrier
density describing the semiconductor material:

∂E

∂t
=−(1+η+iθ)E+EI−2CiΘ(N−1)E+i∇2

⊥E , (1a)

∂N

∂t
=−γ

[
N+βN2−J+|E|2(N − 1)− d∇2

⊥N
]
, (1b)

where E is the normalized slowly varying envelope of the
electric field and N is the carrier density, normalized to
its transparency value. The Laplacian operator

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
, (2)

describes diffraction in the paraxial approximation, with
the transverse coordinates x, y scaled to the square root
of the diffraction length. On the other hand, time is scaled
to the photon lifetime in the cavity. The parameter η ac-
counts for the linear absorption due to the material in
the regions between the quantum wells and the mirrors; θ
is the cavity detuning parameter; C is the bistability pa-
rameter; γ is the nonradiative recombination rate of the
carriers; β is the coefficient of the radiative recombination
involving two carriers; d is the diffusion coefficient of the
carriers; J is the intensity of the pump current, normal-
ized to its transparency value. EI is the slowly varying
envelope the coherent electric field driving the microres-
onator. Equations (1a, 1b) can be used to describe the
microresonator both in passive and in active configura-
tion (VCSEL). The modellistic difference between the two
configurations of the device lies in the parameter Θ: in
particular, for the passive configuration Θ = ∆+i

1+∆2 , where
∆ is the detuning parameter with respect to the central
frequency of the excitonic absorption line, approximated
by Lorentzian shape [15], while for the active configura-
tion Θ = α+ i [16], where α is the linewidth enhancement
factor [17]. The pump current J is nonvanishing only in
the active case, where the medium is inverted, but the
laser is kept some 5-10% below threshold to avoid spatio-
temporal and polarization instabilities typical of semicon-
ductor emitters.

It is known [6,12] that for suitable choices of the pa-
rameters the system can undergo a modulational insta-
bility [18] which causes a pattern-forming process. As an
outcome there exist stationary solutions where the elec-
tric field transverse profile E(x, y) is not homogeneous,
even if the injected field EI is homogeneous. An example
of plane-wave stationary solution with the characteristic
S-shape typical of bistability is plotted as a full line in
Figure 1; here the branches of the patterned stationary
solutions are also shown. Among these spatially modu-
lated solutions there exists a stationary solution in the
form of a peak of light, its intensity corresponding to the
value of the black dot in the figure, embedded in a darker
homogeneous background, corresponding to the coexist-
ing plane-wave solution of the lower branch in the figure.
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Fig. 1. Example of a homogeneous steady-state curve and
branches of patterned stationary solutions in the active case.
Parameters are: C = 0.45, θ = −2, α = 5, I = 2, d = 0.052,
η = 0, β = 0.

Of course, this is the CS introduced above (see Fig. 6b).
All stable CS we met exhibit cylindrical symmetry around
the peak.

If we wish to make the CS peak oscillate, the most
intuitive idea is to modulate in time the homogeneous in-
jected field. By looking at the soliton branch in Figure 1,
one immediately realizes that it is much steeper than the
plane-wave high-transmissivity branch. For slow enough
modulations the response of the CS is expected to scale
with the first derivative of the soliton branch. So a siz-
able enhancement of the oscillations can be foreseen. The
approach must obviously be more rigorous: the precise dif-
ferential gain factor for small signals can only be evaluated
by calculating the linear response curve of the system at
the CS peak.

To this aim, we assume the driving field EI constituted

by a homogeneous background contribution E
(hom)
I and a

small signal eI modulated in time:

EI = E
(hom)
I + eI(r; t) , (3)

where r =
√

x2 + y2 is the radial space variable in the
transverse plane. We allowed for the small injected signal
also the possibility of a spatial structure with the same
cylindrical symmetry as the cavity soliton.

If eI is small enough, the variables of the system will
react linearly. Then, we can assume for E and N the fol-
lowing form:

E(r; t) = ES(r) + e(r; t) , (4a)

N(r; t) = NS(r) + n(r; t) , (4b)

where ES(r) and NS(r) are the stationary solutions cor-
responding to a cavity soliton at r = 0. For symmetry
reasons, we assume that the response of the system has a
radial dependence on the transverse variables.

By substituting equations (3, 4a, 4b) into equations
(1a, 1b) and linearizing with respect to the small quanti-

ties e(r; t), n(r; t), eI(r; t), we obtain the following equa-
tions:

∂e

∂t
= −(1 + η + iθ + 2CiΘ(NS − 1))e

−2CiΘESn + i∇2
⊥e + eI , (5a)

∂n

∂t
= −γ

{
(1 + 2βNS + |ES|

2)n + E∗S(NS − 1)e

+ES(NS − 1)e∗ − d∇2
⊥n
}

. (5b)

Moreover, we will assume for the small quantities
eI(r; t), e(r; t), n(r; t) the following dependence on time:

eI(r; t) = ẽI(r;ω)e−iωt + ẽI(r;−ω)eiωt , (6a)

e(r; t) = ẽ(r;ω)e−iωt + ẽ(r;−ω)eiωt , (6b)

n(r; t) = ñ(r;ω)e−iωt + ñ(r;−ω)eiωt . (6c)

By substituting these expressions into the linear equa-
tions (5a, 5b) and comparing the terms with the same
exponential part, we obtain the following equation for the
variables ẽ, ẽ∗ and ñ, where ẽ∗(r;ω) = ẽ∗(r;−ω):

−iγω̄ẽ = A(r)ẽ + B(r)ñ + i∇2
⊥ẽ + ẽI , (7a)

−iγω̄ẽ∗ = A∗(r)ẽ∗ + B∗(r)ñ− i∇2
⊥ẽ∗ + ẽI∗ , (7b)

−iω̄ñ = C(r)ñ + D(r)ẽ + D∗(r)ẽ∗ + d∇2
⊥ñ . (7c)

Here we rescaled the frequency to γ, ω̄ = ω/γ, and we set

A(r) = − [1 + η + iθ + 2CiΘ(NS(r) − 1)] , (8a)

B(r) = −2CiΘES(r) , (8b)

C(r) = −
[
1 + 2βNS(r) + |ES(r)|2

]
, (8c)

D(r) = −E∗S(r) (NS(r)− 1) . (8d)

Incidentally, from equation (7c) it derives that ñ∗ sat-
isfies the same equation for ñ and, hence, ñ∗ = ñ, that is
n(r; t) is real, as it must be.

For the sake of simplicity, we will consider the case
without diffusion of the carriers. In reference [12] we show
that the system can be treated with similar techniques
in the limiting cases when the diffusion is either large or
small, provided suitable expansions are introduced. Then,
in the following we will set d = 0. With this assumption,
by means of equations (7c) we can express ñ as a function
of ẽ and ẽ∗:

ñ = −
D(r)

iω̄ + C(r)
ẽ−

D∗(r)

iω̄ + C(r)
ẽ∗ . (9)

Once substituted this expression into equations (7a, 7b),
we obtain the final couple of equations for the small quan-
tities ẽ, ẽ∗:

∇2
⊥ẽ = −i [χẽ + ζẽ∗ − ẽI] , (10a)

∇2
⊥ẽ∗ = i [ζ∗ẽ + χ∗ẽ∗ − ẽI∗] , (10b)

where we introduced the coefficients:

χ(r;ω) = −iγω̄ −A(r) +
D(r)B(r)

iω̄ + C(r)
, (11a)

ζ(r;ω) =
D∗(r)B(r)

iω̄ + C(r)
. (11b)
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Equations (10a, 10b) can be solved numerically by ex-
ploiting the shooting method described in [6]. In essence
this method relies on a radial integration of the equa-
tions (10a, 10b) starting from initial conditions at r = 0
which are adaptively “shot at”, by matching the ho-
mogeneous solution to which the CS must connect at
r −→ ∞. The initial condition is determined by impos-
ing that the solution for r → +∞ becomes constant: the
values which the solution approaches can be obtained by
equations (10a, 10b), dropping the Laplacian terms:

ẽ(hom) =
χ
(hom)
∗ ẽI − ζ(hom)ẽI∗

χ(hom)χ
(hom)
∗ − ζ(hom)ζ

(hom)
∗

, (12a)

ẽ
(hom)
∗ =

χ(hom)ẽI∗ − ζ
(hom)
∗ ẽI

χ(hom)χ
(hom)
∗ − ζ(hom)ζ

(hom)
∗

; (12b)

here χ(hom) and ζ(hom) are the expressions (11a, 11b) eval-
uated at the homogeneous values of ES and NS.

3 Maximum amplification coefficient

From equations (10a, 10b), we obtain, for each couple of
functions ẽI, ẽI∗, a couple of functions ẽ, ẽ∗. While the
above relations are formulated for the intracavity field,
the quantity which is really relevant for applications is
the field emerging from the output mirror. Indeed, from
the input-output relations of the microcavity, the output
field is normalized in the same way as the input one and
coincides with the intracavity field. The explicit calcula-
tions are reported in Appendix A. Then, we can consider
straightforwardly ẽ, ẽ∗ as the output signal field, in or-
der to obtain the amplification coefficient of the injected
signal ẽI, ẽI∗.

More precisely, one can observe that, once defined the
radial profile of the functions ẽI, ẽI∗, the correspondence
between the complex vectors eI = (ẽI(r = 0), ẽI∗(r = 0))
and e = (ẽ(r = 0), ẽ∗(r = 0)) (output signal collected at
the peak of the cavity soliton) is linear, that is a 2 × 2
complex matrix. The maximum amplification of the input
signal occurs when the input signal vector (ẽI(r = 0),
ẽI∗(r = 0)) is an eigenvector of that matrix, corresponding
to the suitable eigenvalue [13]. If we assume that eI is the
eigenvector relative to the eigenvalue λ, that is

e = λeI , (13)

the output signal (6b) can be written in the following way:

e = |λ|
{
|ẽI|e

−iωt+iψ + |ẽI∗|e
iωt−iψ

}
eiδ , (14)

where

ψ =
ϕI + ϕI∗

2
+ ϕλ , δ =

ϕI − ϕI∗

2
, (15)

and

ẽI = |ẽI|e
iϕI , ẽI∗ = |ẽI∗|e

iϕI∗ , λ = |λ|eiϕλ . (16)

On the other hand, we can recast the input signal (6a)
as

eI =
{
|ẽI|e

−iωt+iψI + |ẽI∗|e
iωt−iψI

}
eiδ , (17)

where

ψI =
ϕI + ϕI∗

2
. (18)

Next, we consider the intensities of the input and out-
put signals, because these are the quantities that can be
experimentally measured:

|eI|
2 = (|ẽI|+ |ẽI∗|)

2
cos2(ωt− ψI)

+ (|ẽI| − |ẽI∗|)
2 sin2(ωt− ψI) , (19)

|e|2 = |λ|2
{

(|ẽI|+ |ẽI∗|)
2

cos2(ωt− ψ)

+ (|ẽI| − |ẽI∗|)
2 sin2(ωt− ψ)

}
. (20)

These expressions show that the intensities of the input
and output signals are proportional, apart from the phase
of the eigenvalue λ which is present in the phase factor ψ
and not in ψI (compare expressions (15) and (18)). Then,
we can define as amplification coefficient the quantity

Γ = |λ|2 . (21)

In this way the input signal vector eI, which experiences
the maximum amplification, is the eigenvector correspond-
ing to the eigenvalue with the largest modulus.

The amplification coefficient Γ can be calculated nu-
merically, exploiting the shooting method [6] to integrate
the equations (10a, 10b) and, then, to evaluate the eigen-
value λ with the largest modulus. On the other hand, if
we consider the plane-wave case in which we use as sta-
tionary solution ES, NS the homogeneous values relative
to the lower branch of the steady-state curve, the Lapla-
cian terms in equations (10a, 10b) can be dropped and the
amplification coefficient can be calculated analytically [13,
14]. As expected amplification factors are smaller in this
latter case due to the smaller slope of the lower branch
of the steady-state curve with respect to the slope of the
CS branch. It results that both in the passive and in the
active configurations the amplification factor Γ for plane-
wave modulation is hardly larger than 1. On the contrary,
we will see in the next section that things considerably
improve when CS are involved.

4 Discussion of results

We first report some numerical results about the amplifi-
cation coefficient Γ , obtained by integrating the linearized
equations (5a, 5b) by means of the shooting method, and
compare them to analogous results obtained under the
same conditions (amplitude of the modulated signal equal
to 1% of the background driving field: this is enough to
preserve linear regime) performing a direct integration of
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Fig. 2. Amplification coefficient Γ as a function of the mod-
ulation frequency ω̄ in the case of the passive configuration.
Solid line: shooting method; •: split-step method. Parameters:
C = 40, θ = −2, ∆ = 1, J = 0, γ = 0.002, β = 1.6, η = 0.25,

d = 0, E
(hom)
I = 31.
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Fig. 3. Amplification coefficient Γ as a function of the mod-
ulation frequency ω̄ in the case of the active configuration.
Solid line: shooting method; •: split-step method. Parameters:
C = 0.45, θ = −2, α = 5, J = 2, γ = 0.012, β = η = d = 0,

E
(hom)
I = 0.75.

the equations (1a, 1b) by means of a split-step method
with excellent agreement.

In Figures 2 and 3 two examples are reported, where
the input signal is homogeneous in the transverse plane.
From these figures one can note that high amplification
coefficients can be obtained, especially in the active con-
figuration (see Fig. 3). In this case we can also estimate
the bandwidth for the modulation amplification, taking
the resonance width at half height. By introducing real-
istic parameters for GaAs/AlGaAs heterostructures in a
high reflectivity Bragg microresonator [12], we can expect
a bandwidth of about 300 MHz.

0 20 40 60 80
-0.05

0.00

0.05

0.10

0.15

δE

t

Fig. 4. Time evolution of an initial perturbation affecting the
electric field E at CS peak, in the active configuration. The
long nonoscillating decay is exponential with a damping time
τ = 75.8. Parameters are the same as in Figure 3.

One would expect that the frequency response of the
system to the modulated input signal just evidenced is
linked to the damping time of the perturbations affecting
the CS at regime. In order to show that this is the case,
we have performed some numerical simulations where we
observed how a small perturbation δE introduced in the
stable steady state with a CS relaxes during the time evo-
lution of the system.

In Figure 4 we report the time evolution of a small
perturbation affecting the CS peak, in the case of the ac-
tive configuration. We note the presence of two time scales
in the damping process of the CS perturbation: a faster,
oscillating damping and a slower, nonoscillating damping.
This behavior can be heuristically understood if we ana-
lyze the behavior of the plane-wave relaxation dynamics.
To this purpose we performed a linear stability analysis of
the homogeneous steady state of equations (1a, 1b) (see
Appendix B). From Figure 4 one can derive a long de-
cay rate τ−1 = 1.32 × 10−2. The frequency response of
the system is given by the Fourier transform of the damp-
ing function and it results a Lorentzian with a half-width
ω0 = τ−1. The amplification coefficient Γ as a function
of the input signal frequency ω̄ reported in Figure 3, can
be well fitted by a Lorentzian function with a half-width
ω̄0 = 1.2. By comparing this value with ω̄0 = 1.1 obtained
by normalizing τ−1 to γ, we have a clear evidence of the
direct link between the frequency response of the system
and the damping of perturbations.

Also in the passive case two time scales can be evi-
denced in the exponential damping of a perturbation af-
fecting the CS peak (see Fig. 5). The longer one would give
a Lorentzian curve with a half-width ω̄0 = 4.85 for the fre-
quency response. Even if it is more difficult to extrapolate
a Lorentzian shape from the plot reported in Figure 2,
the half-width of the curve therein is about the same as
ω̄0 given above. Despite this link between relaxation time-
scales and CS resonance cutoff, it appears that a similar
link does not exist for the resonance peak, which could be
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Fig. 5. Time evolution of an initial perturbation affecting the
electric field E at CS peak, in the passive configuration. The
long nonoscillating decay is exponential with a damping time
τ = 103.1. Parameters are the same as in Figure 2.
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Fig. 6. Cross section of the input field with the super-Gaussian
transverse profile (22) compared with the CS transverse cross
section, in the case of the active configuration. Parameters are
the same as in Figure 3.

intuitively expected to be related to the relaxation oscil-
lations of the CS peak. The same simulations performed
above did not offer an unambiguous interpretation for the
position of the resonance peak (about ω̄ = 0 for the active
case, ω̄ = 4 for the passive one).

It may be objected that modulating in time the whole
homogeneous input beam requires a rather large input sig-
nal power, given that the device is broad-area. By adopt-
ing typical parameter values as above, holding powers for
EI can be on the order of 500 mW in the passive case
and 50 in the active one [12]. This has motivated us to
maintain the input homogeneous field constant and to su-
perimpose thereon a narrow super-Gaussian pulse bearing
the modulation in time, in such a way that the amplitude

0 1 2 3 4 5 6 7 8
0

50

100

150

200
 σ = 4

 σ = 3

 σ = 2

Γ

ω

Fig. 7. Amplification coefficient Γ as a function of the modu-
lation frequency ω̄, relative to the super-Gaussian input signals
of Figure 6.

of the small input signal (6a) reads

ẽI = ẽ
(hom)
I exp

[
−

(
r2

2σ2

)4]
. (22)

In Figure 6 we show the profile of the input signal com-
pared with the profile of the stationary cavity soliton. In
Figure 7 we report the relative amplification coefficients
as a function of the modulation frequency in the case of
the active configuration. We do not provide an analogous
curve for the passive configuration because the gain factors
attainable in this case are less interesting. We note that
the amplification coefficient is decreased with respect to
the case of homogeneous input signal, but it is still large as
long as the region where the input signal is nonvanishing
almost coincides with the region where the cavity soliton
is nonvanishing. Since the power scales as the intensity by
the pulse area, now the input signal power required for
amplification is considerably lowered (by a factor 10 for
σ = 4 in equation (22)).

We note, moreover, that the resonance peak shifts in
the gain spectrum to higher frequencies ω̄ > 0, like in
the passive configuration (compare Fig. 2), when the in-
put signal has a radial dependence while the bandwidth
is not dramatically affected. By adopting perturbative ap-
proaches, we could not provide a quantitative motivation
for this shift.

Another set of simulations was devoted to estimate
the frequency response of the system to the monochro-
matic input signal. In the linear limit, by definition, the
output signal is characterized by the same frequency as
the input one. If we relax this approximation, however,
due to the nonlinearity of the system, we expect that in
the output modulation also the harmonics of the injected
frequency are present. This is, in fact, what happens when
the amplitude of the input field is large enough (with re-
spect to the background) to go beyond the linear limit; in
Figures 8 and 9 we show the power spectra of the output
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Fig. 8. Power spectrum of the output signal, in the case of the
passive configuration. The spectrum is scaled to the value at
the modulation frequency ω̄ = 4. The amplitude of the input

signal is 5% of E
(hom)
I . Parameters: C = 40, θ = −2, ∆ = 1,

J = 0, γ = 0.002, β = 1.6, η = 0.25, d = 0, E
(hom)
I = 31.
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Fig. 9. Power spectrum of the output signal, in the case of
the active configuration. The spectrum is scaled to the value
at the modulation frequency ω̄ = 1. The amplitude of the input

signal is 15% of E
(hom)
I . Parameters: C = 0.45, θ = −2, α = 5,

J = 2, γ = 0.012, β = η = d = 0, E
(hom)
I = 0.78.

signals for both the passive and the active configurations:
the presence of higher harmonics of the main frequency
is evident; in this way an array of CS can be regarded
as a parallel device where each pixel acts as a multiplier
channel for the particular frequency, which modulates the
super-Gaussian pulse applied at the CS location. Turning
the CS on and off activates and inhibits the amplifying
channels for selected frequency components with no need
to act on the input signal. Furthermore, we observed that
the linewidth at the fundamental frequency in output is
the same we have in the input (we do not show here the
input spectra for sake of shortness): this fact may suggest
that the signal-to-noise ratio in input could not be heavily

0 2000 4000 6000 8000 10000 12000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7|E I |
2

t

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7|E | 2

t

a)

b)

c)

Fig. 10. Example of the commutation scheme for the input
signal of frequency ω̄ = 1 (a): output signal (b) collected at
detector 1 (solid line) and at detector 2 (dashed line). The
commutation is provided by the shifting cavity soliton (c) from
position 1 to position 2 of the transverse plane. Parameters are
the same as in Figure 3.

degraded in the amplification process. A quantitative eval-
uation of the signal-to-noise ratio enhancement factors is
under preliminary investigation.

We also studied the dependence of the amplification
coefficient as a function of the input signal amplitude in
the nonlinear limit: we found that Γ is only weakly depen-
dent on the signal amplitude, varying of about 10% when
the signal modulation is brought from 1% to 5% of the
background (we do not show here any plot about this).

The amplifying properties of CS just demonstrated,
in connection with their dynamical properties, allow to
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conceive different ways to process the input signal. As an
example, one can commute the input signal from one po-
sition of the transverse plane to another one. In Figure 10
we report the output signals collected at two different po-
sitions of the transverse plane. The cavity soliton is mod-
ulated by the homogeneous field (Fig. 10a). A phase gra-
dient is superimposed to this time-dependent background
and the soliton consequently shifts from position 1 to posi-
tion 2 (Fig. 10c). The signal collected by two detectors at
locations 1 and 2 shows the signal commutation between
the two channels (Fig. 10b). In this way the carrier signal
(the oscillation of the plane wave) coexists in the same
“channel” (the input field) with the switching signal (the
phase gradient), and the result is the output signal (the
modulated intensity collected by the detector) switching
from one output channel (the detector at position 1) to
the other (the detector at position 2).

In the previous analysis, we defined the maximum am-
plification coefficient as the ratio of the intensity of the
input signal to that of the output signal collected at the
CS peak. What is actually observed when the radiation
is collected by a detector is the modulation of the out-
put power, integrated over the detector area. For narrow
detection areas, this is the power associated to the whole
CS (its intensity integrated over soliton size). However,
we verified that the size of the CS is practically constant
during the oscillations, so that the power is simply pro-
portional to the intensity at r = 0; then Γ can be referred
to as the gain factor.

5 Conclusions

In this work we have evidenced that CS can efficiently
amplify oscillations of an input optical beam. The differ-
ential gain factor in both passive and active configurations
can confront those of other devices described in literature
for similar applications. Moreover, the connection between
amplifying properties and the damping time of perturba-
tions exhibited by CS was stressed.

In the main body of the paper we discussed the most
interesting features related to operations limited to a
single soliton. Indeed the appealing side of CS is their pos-
sibility of being organized in reconfigurable arrays, and it
has been shown [12,19,20] that they can be shifted to any
desired location in the transverse field profile by apply-
ing proper phase or intensity gradients to the input field.
While the investigations are still in an initial phase, we are
studying the mechanisms by which input fields can steer
two or more modulated CS.

As an example, we verified that, if there are two CS si-
multaneously present in the transverse plane at such a
relative distance that they are independent of one an-
other, each of them can amplify an input signal of different
frequency, provided that each one is injected by using a
super-Gaussian pulse as described above. There is no evi-
dence of reciprocal interference. This feature is interesting
for the parallel amplification of two or more signals and,
in connection with the showed nonlinear response of the

Fig. 11. Scheme of a two-sided optical cavity.

input/output characteristics, also for parallel frequency
multiplication.

Furthermore, with the aim of performing all-optical
signal processing by means of CS-based devices, we pro-
posed a reliable scheme for the realization of signal com-
mutation among different transmitting channels in the
transverse plane: it relies on the dynamical and ampli-
fying properties exhibited by CS.

This research was carried along in the framework of the ES-
PRIT LTR project PIANOS (Processing of Information by Ar-
rays of Nonlinear Optical Solitons). We also acknowledge par-
tial support form the MURST project “Spatial Pattern Con-
trol in Sistemi Ottici Nonlineari” and from the CNR finalized
project MADESS.

Appendix A

In this Appendix we want to determine the input-output
relations relative to a two-sided optical cavity like that
considered in this paper.

If we indicate with a the annihilation operator for the
internal mode, with aIN and bIN the incoming fields from
the two sides, and with aOUT and bOUT the respective
outcoming fields (see Fig. 11), the Heisenberg equation de-
scribing the time evolution of the operator a becomes [21]

da

dt
=

1

i~
[a,Hsys]− κa +

√
κ(aIN + bIN) , (A.1)

where the Hsys is the Hamiltonian of the system inside the
cavity and κ is the cavity dumping constant (we assumed
that the two mirrors have the same dumping constant).
The boundary conditions at the mirrors take the form:

aOUT =
√
κa− bIN , (A.2a)

bOUT =
√
κa− aIN . (A.2b)

If we now rescale time to the photon lifetime as in
equations (1a, 1b), equations (A.1) can be written as

da

dt
=

1

i~κ
[a,Hsys]− a + āIN , (A.3)

where we set bIN = 0 (in fact in our model we inject the
field only from one side) and āIN = aIN/

√
κ. We note, in
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Fig. 12. First-order correction in γ of the real eigenvalue of
equation (B.2) as a function of the modulus of the transverse
wave vector: (a) passive configuration; (b) active configuration.
Parameters are the same as in Figures 2 and 3, respectively.

this way, that the internal field a and the injected field
āIN have the same normalization than in equations (1a,
1b). By introducing the same normalization also for the
output field aOUT and remembering equations (A.2a), we
obtain

āOUT =
1
√
κ
aOUT =

1
√
κ

√
κa = a , (A.4)

that is the output field normalized in the same way as the
input field is equal to the internal field.

Appendix B

In this Appendix we want to study the response of the sys-
tem to small fluctuations around the homogeneous steady
state of equations (1a, 1b). The homogeneous solution
(ES, NS) is obtained by putting equal to zero the time
derivatives and neglecting the Laplacian in equations (1a,

1b). We obtain

|EI|
2 = |ES|

2
{

[1 + η − 2CIm(Θ)(NS − 1)]
2

+ [θ + 2CRe(Θ)(NS − 1)]
2
}

, (B.1a)

NS =
−(1 + |ES|2) +

√
(1 + |ES|2)2 + 4β(|ES|2 + J)

2β
,

(B.1b)

which, for appropriate choices of parameters, exhibits the
characteristic S-shaped form of optical bistability depicted
in Figure 1.

The linear stability analysis of the homogeneous so-
lution (B.1a, B.1b) is performed in [12] by studying the
response of the system to small fluctuations growing (or
decaying) exponentially in time and modulated in space
by the transverse wave vector (Kx,Ky). It leads to the
following eigenvalue equation:

ν3 + a2ν
2 + a1ν + a0 = 0 , (B.2)

where the coefficients ai, i = 0, 1, 2 depend on the system
parameters and on the modulus square K2 of the trans-
verse wave vector:

a2 = 2A1 + γ(A4 + dK2) , (B.3a)

a1 = A2
1 +(A2 + K2)2

+γ[2A1(A4 + dK2)+A3Im(Θ)] , (B.3b)

a0 = γ{[A2
1 + (A2 + K2)2](A4 + dK2)

−A3[(A2 + K2)Re(Θ)−A1Im(Θ)]} , (B.3c)

with

A1 = 1 + η − 2CIm(Θ)(NS − 1) , (B.4a)

A2 = θ + 2CRe(Θ)(NS − 1) , (B.4b)

A3 = 4C|ES|
2(NS − 1) , (B.4c)

A4 = 1 + |ES|
2 + 2βNS . (B.4d)

The homogeneous solution will be stable only if all the
eigenvalues ν have a negative real part.

Because both in the active and in the passive config-
uration the value of the parameter γ is of order 10−2 or
less, we can estimate the solutions of equation (B.2) by
performing an expansion in power series of γ. If we as-
sume ν = ν0 + γν1, at zero order in γ equation (B.2)
becomes

ν30 + a
(0)
2 ν20 + a

(0)
1 ν0 + a

(0)
0 = 0 , (B.5)

where a
(0)
i , i = 0, 1, 2 are the coefficients ai at zero order

in γ. Because a
(0)
0 = 0, equation (B.2) has an eigenvalue

which is vanishing at zero order in γ. The other two eigen-
values are complex conjugate and, by considering the ex-
pressions for the coefficients ai, i = 0, 1, 2, they result at
zero order in γ:

ν±0 = −A1 ± i|A2 + K2| . (B.6)
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These eigenvalues cause a fast and oscillating relaxation of
the perturbations affecting the homogeneous solution, the
oscillation frequency being given by the imaginary part of
ν±0 .

At first order in γ, equations (B.2) becomes

3ν20ν1 + a
(1)
2 ν20 + 2a

(0)
2 ν0ν1 + a

(1)
1 ν0 + a

(0)
1 ν1 + a

(1)
0 = 0 ,

(B.7)

where a
(1)
i , i = 0, 1, 2 are the coefficients ai at first order

in γ. If now we set ν0 = 0 in equation (B.7), we find the
first-order correction of the real eigenvalue which is van-

ishing at zero order: there results ν1 = −a(1)0 /a
(0)
1 . This

eigenvalue is responsible for the slow relaxation of the per-
turbation towards the steady state. Because it is real no
oscillations are expected. In Figure 12 we report ν1 as a
function of the modulus of K for both passive and active
configurations.
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